Ecosystem services under changing climate

Oleg Anisimov oleg@oa7661.spb.edu

State Hydrological Institute, St.Petersburg, Russia

Overview

- 1. Ecosystems, including vegetation, provide important services to the population and environment
- 2. Distribution and productivity of vegetation are likely to change under changing climatic conditions
- 3. How vegetation zones can change in the 21st century?
- 4. How vegetation productivity can change?

Northern tundra
Typical tundra
Southern tundra
Forest-tundra
Northern taiga
Middle taiga
Southern taiga
Alpine

Statistical vegetation zones model

Northern tundra
Typical tundra
Southern tundra
Forest-tundra
Northern taiga
Middle taiga
Southern taiga
Alpine

Climatic limits of the vegetation zones (Anisimov et al. 2017)

	ΣT _{>5} , '	°C×days	ΣT _{<0} , °C	×days	D, °C×d/mm			
#	Lower	Upper	Lower	Upper	Lower	Upper		
1				-6000÷				
	0	50÷110	-9000	-4000	0.0	1.1÷1.7		
2			-8000-	-5500÷				
	0÷90	400÷1000	-5500	-1100	0.0	2.1÷6.1		
3			-7500-	-4500÷				
	50÷250	800÷1250	-4400	-1090	0.0÷0.2	2.5÷7.5		
4			-7000-	-3000÷				
	200÷800	1100÷1600	-3400	-1050	0.5÷1.7	3.1÷7.6		
5	500÷		-6800-	-4500÷				
	1000	1200÷1500	-2900	-1020	0.8÷2.3	1.8÷7.2		
6	650÷		-6000-	-3400÷				
	1100	1700÷1950	-2500	-1000	0.8÷2.1	3.5÷7.9		
7	1200÷		-5400-	-3300÷				
	1550	2000÷2300	-2300	-700	0.9÷2.7	4.0÷8.5		
8	1500÷		-3800-	-2000÷				
Ū	1800	2200÷2700	-1800	-400	1.1÷3.4	4.3÷8.7		
9	700	2500÷3000	-6000	0.0	0.6	10.0		
10	200	1500	-8000	-1500	0.0	5.0÷7 <u>.0</u>		
11	0	1200	-9000	-2500	0.0	3.9÷5.0		

Northern tundra
Typical tundra
Southern tundra
Forest-tundra
Northern taiga
Middle taiga
Southern taiga
Alpine

Projected climate parameters change (Anisimov and Kokorev 2016)

- Southern taiga
- Alpine

Temperate forest

Projected by 2050 vegetation zones shift

Probability of biome change by 2050, %

NDVI-based biome productivity model (Anisimov et al. 2017)

NDVI variations in 4 sectors in the NH

NDVI-based biome productivity model (Anisimov et al. 2017)

	European Russia					West Siberia East Siberia					Far East					
Zone	aver- age	trend (% per 10 years)	correlation coefficients		aver-	trend (% per	correlation coefficients		aver-	trend (% per	correlation coefficients		aver-	trend (% per	correlation coefficients	
			ΣT_{5+}	ΣR	age	10 years)	ΣT_{5+}	ΣR	age	10 years)	ΣT_{5+}	ΣR	uge	10 years)	ΣT_{5+}	ΣR
2	0.157	7	0.78	-0.16	0.225	3.5	0.66	-0.55	0.129	7.9	0.73	-0.29	0.272	4.8	0.70	-0.04
3	0.300	5.7	0.70	-0.09	0.201	5.2	0.78	-0.54	0.190	5.5	0.68	-0.37	0.305	2	0.54	-0.15
4	0.333	5.4	0.64	-0.09	0.248	5.1	0.77	-0.36	0.217	8	0.81	-0.07	0.302	10.9	0.65	0.05
5	0.356	7	0.50	-0.23	0.296	4.7	0.69	-0.33	0.263	7	0.74	0.04	0.345	9.9	0.62	0.17
6	0.365	4.7	0.39	-0.10	_	_	_	_	0.301	4.7	0.42	-0.08	_	_	_	_
13	0.365	5.1	0.80	-0.19	0.338	3.4	0.64	-0.42	0.319	4.7	0.66	-0.37	0.354	9	0.59	0.37
14	-	_	_	-	0.322	-0.4	0.57	-0.60	0.260	5.8	0.74	-0.30	0.326	8.6	0.64	0.20
15	0.331	5.8	0.64	-0.06	0.246	4.2	0.86	-0.44	0.174	6.9	0.82	-0.31	0.225	4.9	0.72	-0.12

Correlation of NDVI with climate predictors

Projected GPP changes for biomes in 4 sectors (in NDVI units)

NDVI-based biome productivity model (Anisimov et al. 2017)

-	European Russia				West Siberia			East Siberia				Far East				
	2015-2045		2035-2065		2015-2045		2035-2065		2015-2045		2035-2065		2015-2045		2035-2065	
Zone	IV	DVI, %	И	DVI, %	М	DVI, %	И	DVI, %	Ŋ	DVI, %	И	DVI, %	Ŋ	DVI, %	Ŋ	DVI, %
	ND	ΔNI	ND	ΔNI	ND	ΔNI	ND	ΔNI	ND	ΔNI	ND	INΔ	ND	ΔNI	ND	ΔNI
2	0.180	14.6	0.205	30.6	0.228	13.4	0.256	27.4	0.216	13.7	0.239	25.8	0.316	16.2	0.367	34.9
3	0.328	9.3	0.362	20.7	0.285	14.9	0.315	27.0	0.240	10.6	0.261	20.3	0.359	17.7	0.411	34.8
4	0.358	7.5	0.386	15.9	0.329	11.1	0.354	19.6	0.295	12.2	0.327	24.3	0.339	12.3	0.388	28.5
5	0.378	6.2	0.400	12.4	0.369	9.2	0.393	16.3	0.329	9.3	0.358	18.9	0.383	11.0	0.431	24.9
13	0.38	14.8	0.426	28.7	0.357	10.9	0.385	19.6	0.351	10.0	0.378	18.5	0.387	9.3	0.429	21.2
14	_	_	_	_	0.273	11.0	0.294	19.5	0.290	11.5	0.316	21.5	0.365	12.0	0.405	24.2
15	0.259	15.1	0.290	28.9	0.251	18.4	0.281	32.5	0.199	14.4	0.220	26.4	0.267	18.7	0.306	36.0

Projected NDVI changes

Projected by 2050 GPP changes

- 1 fixed vegetation zones;
- 2 adjusted vegetation zones;
- 3 difference (2)-(1)

Projected biome areas and GPP changes

Veg.	Baselin	ie	Mid-21 st century projection						
Zone	1982 - 20	014	Fixed VZ	Adjusted VZ					
	Area 10 ⁶ km ²	C, Pg/y	C, Pg/y	Area 10 ⁶ km ²	C, Pg/y				
2	0,775	0,097	0,108	0,097	0,009				
3	2,007	0,472	0,564	0,304	0,061				
4	1,331	0,445	0,531	1,36	0,386				
5	1,878	0,74	0,847	0,931	0,344				
6	2,427	1,257	1,399	2,048	1,035				
7	3,502	2,11	2,3	2,964	1,757				
8	2,926	1,969	2,122	2,781	1,898				
9	5,043	3,048	3,371	7,297	4,769				
10	3,369	1,095	1,226	2,122	0,718				
11	1,316	0,285	0,345	0,307	0,068				
12	0			2,348	2,456				
15	0			0,362	0,323				
16	0			1,246	0,708				
17	0			0,407	0,235				
	24.57	11.518	12,813	24,57	14,767				

Conclusions

- 1. NDVI data indicate general rise of the biome productivity in the extra-tropical zone of the Northern Hemisphere with positive trends up to 10% per decade in the tundra area.
- 2. NDVI changes correlate with climate predictors, such as summer temperature sums and precipitation.
- 3. By mid-21st century biomes are likely to shift northward in response to climatic change.
- Projected increase in GPP is estimated at +1.3 Pg C/y for the fixed distribution of the vegetation zones and at +3.2 Pg C/y for the adjusting vegetation zones.
- 5. Photosynthetic carbon uptake due to increasing GPP and northward advancement of the productive biomes is likely to fully compensate the projected increase in carbon emission.