Extremely high spatial resolution observations for deriving vegetation characteristics: recent advances

Fred Baret

INRA-EMMAH-CAPTE, Avignon, France

Extremely high resolution imagery is now available from various vectors and sensors

2

The toys we are playing with

- Phénomobile
 - 150 plot/h Several hours between first and last plot sampled
- Little sensitive to wind
- Active measurements

Drone

- Throughput: 1000 plot/h Almost simultaneous aquisition of the platform
- Sensible to wind
- Passive measurements

accessing new scales

Organ

- Leaf
 - Size / orientation
 - Sanitary state
 - Biochemical composition (Chlorophyll / Water contents)
- Stem
 - Diameter
 - height
- fruits

• (Plant)

- When not too much overlap between plants:
 - Early stages
 - Low plant density

Canopy

- Plant/stem density (and sowing pattern)
- height
- Green fraction
- Green area index
- FIPAR
- 3D structure

Organ: Stem characterization after harvest

- The stem density and diameter can be measured with an accuracy better than 10%
- When spatial resolution better than 0.2 mm
- Biovolume (basal stem area x crop height) highly correlated to total biomass at harvest

From Jin et al., AFM, 2018

Plant / Canopy: Plant counting & characterization

- Sony α 5100
- 60 mm lens
- 3-7 m altitude
- 0.2-0.5 mm resolution

Images quality equivalent to those taken from ground

Processing Method

Automatic classification White balance correction, SVM classification 11 11 m Varall me both Hate Mithing JAX JAN JANAN A Iditenfying rows Distribution of green pixels Hate Mithing Identifying objects Cleaning by erosion/dilatation **Objects metrics** Length, width, orientation, size, tips ... 1 plant **Classifying objects** 2 plants Actual density 3 plants

Sample results

• Good performance if density not too high

- Importance of image quality:
 - Resolution (<0.5mm)
 - Crisp (RAW),
 - Orientation with sun (better facing sun)
- Difficulty to maintain low altitude precisely (sonar)
- Difficulty to geolocate the images (RTK/PPK)

From Liu et al. FPS, 2017

From Jin et al. RSE, 2017

Canopy: plant height (1/2)

plant height: results

Canopy: Leaf Chlorophyll Content

Improved retrieval performances when separating the background from the leaf problems

From Jay et al., RSE 2017

Green fraction and second order functions

Green fraction (first order)

High spatial resolution imagery allows to account for leaf clumping through second order functions

From Baret et al., AFM 2010

Second order functions

From Lopez-Lozano et al., AFM 2014¹²

Combining observations with 3D models

ADEL-Wheat model (20-30 parameters)

GAI estimates from LiDAR combined with ADEL-Wheat

CONCLUSION

Much more pertinent information can be derived from extremely high resolution imagery

- ✓ Accessing new scales (organ, plant)
 - Characteristics of specific organ/plant
 - Average characteristics (most often)
- ✓ Better description of the canopy
 - 3D structure (Structure from Motion)
 - Element grouping (clumping)

Different approaches as compared to the degraded resolution data

✓ From Radiative transfer model inversion to machine (deep) learning approaches

□ Using 3D models should improve accuracy of retrievals

- Limits of the realism of the 3D models
- Develop hybrid learning mixing model and observations

□ Spatial extension methods to be developed to cover larger areas

Combination with satellite observations

