Angular Normalization of Satellite Observations of Sun-induced Chlorophyll Fluorescence as an Improved Proxy of Vegetation Productivity

Jing M. Chen^{1,2}, Liming He¹, Shuren Chou², Gang Mo¹, Joanna Joiner³, Hua Yu², Yongguang Zhang², Weimin Ju², and Ze Wang¹

¹Department of Geography University of Toronto, Canada ²International Institute of Earth System Science Nanjing University, China ³NASA Goddard Space Flight Center

Acknowledgement:

Christian Frankenberg, *Jet Propulsion Laboratory* Joe Berry, *Stanford University*

Juhan Ross Legacy Symposium Tartu Observatory, Toravere, Estonia 24-25 August 2017

What is Sun-induced Chl Fluorescence (SIF)?

Part (~1%) of photosynthetically active radiation absorbed by leaf chlorophyll is emitted in longer wavelengths as SIF.

Colombo et al., 2016, Annali Di Botanica

Satellite Sensors That Measure SIF

Launch: July 2014 Footprint: 1.29 km × 2.25 km Cross-Track: <±1°

Launch: January 2009 Footprint: 10.5 km Cross-Track: ±35°

Launch: October 2006 Footprint: 80 × 40 km Cross-Track: ±54°

Correlation Between Chlorophyll Fluorescence and GPP

GOSAT, 2009, Annual Total, Spatial Correlation

Frankenberg et al. 2011, GRL

Questions

1. Should we be concerned about the BRDF of SIF measurements?

An eddy covariance system and a rotating SIF observation system Winter wheat, Jurong, Jiangsu, May 2016

Multi-angle Observations of SIF₆₈₇ Winter Wheat, Jurong, Jiangsu, China, May 17, 2016

Multi-angle Observations of SIF₆₈₇ Winter Wheat, Jurong, Jiangsu, China, May 17, 2016

Multi-angle Observations of SIF₆₈₇ vs. GPP Winter Wheat, Jurong, Jiangsu, China, May 16, 2016

SIF at the Canopy Level

 $SIF(\theta_{v}, \theta_{s}, \phi, t) = P_{sun}(\theta_{v}, \theta_{s}, \phi) \times SIF_{sun}(t) + P_{sh}(\theta_{v}, \theta_{s}, \phi) \times SIF_{sh}(t)$

Pinto et al., 2016, PCE

Probability of Observing a Sunlit Leaf

Probability of Observing Sunlit Leaves

 $P_{sun,v}(L)$: Probability of observing sunlit leaves at the accumulated LAI (L),

 $P_{sun}(L)$: Probability of illuminating a leaf at L, $P_{v}(L)$: Probability of seeing a leaf at L

 $P_{sunv}(L) = P_{sun}(L) P_{v}(L)$

If these two probabilities are independent of each other, i.e., the solar beam and the view line reach the same leaf through different gaps in the canopy. Otherwise, a hotspot function needs to be used.

Probability of Observing Sunlit Leaves

$$L_{sun_v} = \int_0^{t} \exp\left[-\frac{0.5}{\mu_s} \cdot \frac{L\Omega}{h} \cdot (h-z)\right] \cdot \frac{L\Omega}{h} \cdot \exp\left[-\frac{0.5}{\mu_v} \cdot \frac{L\Omega}{h} \cdot (h-z)\right] dz$$
$$= 2 \cdot \frac{\mu_s \mu_v}{\mu_s + \mu_v} \left\{ 1 - \exp\left[-\left(\frac{1}{\mu_s} + \frac{1}{\mu_v}\right) \cdot \frac{L\Omega}{2}\right] \right\} \qquad \qquad \mu_s = \cos \theta_s$$
$$\mu_v = \cos \theta_v$$

Observed SIF is the Sum of the SIF Emissions from Sunlit and Shaded Leaves and Enhancement due to Multiple Scattering

$$SIF_{740} = SIF_{s} \cdot \dot{L}_{sun_v} + SIF_{sh} \cdot \dot{L}_{sh_v} + \alpha \cdot SIF_{s} \cdot L_{v}$$

Sunlit + Shaded + Multiple Scattering

SIF per unit sunlit leaf area: $SIF_{s} = SIF_{740} / (\dot{L}_{sun_{v}} + \dot{L}_{sh_{v}} / \beta + L_{v} \cdot \alpha)$

SIF at the hotspot: $SIF_{h} = SIF_{740} \cdot L_{sun} / (\dot{L}_{sun_{v}} + \dot{L}_{sh_{v}} / \beta + L_{v} \cdot \alpha)$

He, Chen et al. (2017, GRL)

Hot Spot Correction to the Probability of Observing Sunlit Leaves

$$\dot{L}_{sun_v} = L_{sun_v} + \left[L_{sun} - L_{sun_v}\right]F(\xi)$$

Ratio of the SIF Emissions from Leaves Trapped in the Canopy

 $SIF_{sh} \cdot \int_0^h \left(1 - P_c \left(\frac{L\Omega}{h} \cdot (h - z) \right) \right) \cdot \left(1 - \exp \left[-\frac{0.5}{\mu_s} \cdot \frac{L\Omega}{h} \cdot (h - z) \right] \cdot \right) \frac{L\Omega}{h} dz$

Enhancement of SIF by Multiple-scattering (MS) for a Shaded Leaf

Assuming that the SIF from a shaded leaf is one unit without MS, the MS contributes 0.1 to 0.87 unit of SIF for different LAIs and solar zenith angles.

 $\Delta SIF/SIF_{sh}$ 80 70 0.7 60 0.6 (°) 40 0.5 0.4 30 0.3 20 0.2 10 0.1 7 1 2 3 4 5 6 8 LAI $(m^2 m^{-2})$

 $\alpha = \Delta SIF / SIF_{sun}$

Total Canopy SIF after Angular Normalization

$$SIF_t = SIF_h + SIF_{sh} \cdot (L - L_{sun})$$

Leaf-level Photosynthesis Model

Farquhar's Enzyne-Kinetic Model

 $W_{\rm c}$ and $W_{\rm j}$ are temperature/nutrient-limited and light-limited gross photosynthesis rates

SIF and GPP at the Canopy Level

$SIF_{t} = SIF_{h} + SIF_{sh} \cdot (L - L_{sun})$ $GPP = L_{sun}GPP_{sun} + GPP_{sh}(L - L_{sun})$

Chlorophyll Fluorescence Distribution (GOME-2, 2010, Annual Average, 1° Resolution)

1

Daily Average: $\overline{F_s} = F_s / \cos(SZA(t_0)) \cdot \int_{t=t_0}^{t=t_0+1} \cos(SZA(t)) dt$

Chlorophyll Fluorescence at Hotspot (GOME-2, 2010, Annual Average, 1° Resolution)

Global GPP Distribution (Two-leaf model BEPS, 2010, 1° Resolution)

Temporal Correlation Between SIF and GPP (GPP from BEPS, SIF from GONE-2, 2010, 1° Resolution)

R - temporal correlation

Using original daily GONE-2 data and choosing the largest normalized daily SIF values in 10-day intervals to correlate with 10-day total GPP values over one year

Improvement of SIF after its Angular Normalization as a Proxy of GPP

The differences of R² (Δ R²) between SIF_t vs. total GPP and SIF₇₄₀ vs. GPP, for pixels with p<0.001 in 2007-2015.

Positive values indicate improved correlation after the angular normalization.

He, Chen et al. (2017, GRL)

Multi-angle Observations of SIF₆₈₇ vs. GPP Winter Wheat, Jurong, Jiangsu, China, May 17, 2016

Summary

- So far limited field measurements of sun-induced chlorophyll fluorescence (SIF) over a rice field show large variations with view and sun angles;
- Separating the measured total SIF into sunlit and shaded components and re-computing the total SIF emission as the sum of these components is an effective way to normalize multi-angle SIF measurements;
- Applying the angular normalization scheme to GOME-2, we found that the coefficient of determination (r²) is improved by up to 15% between normalized SIF and modelled GPP from the case without normalization. Most improvements are found in forests and shrubs where vegetation structure is distinct.

Acknowledgement:

This research is supported by an NSERC grant, a Canada Research Chair grant, and a grant from the Chinese National Science Foundation.