Effects of sky radiation on surface reflectance

Yves Govaerts
www.rayference.eu

Juhan Ross Legacy Symposium, August 24-25 2017, at Tartu Observatory, Toravere, Estonia

Surface and atmospheric radiative transfer communities seem to live on different "flat" planets.

The atmospheric community knows that there is something solid below the atmosphere which reflects sun light in a more complicated way than a simple Lambertian surface.

Lambertian "Equivalent" Reflectance (LER) is still widely used, however without a clear mathematical definition.

Assuming the surface BRF is known, how to define a LER?

THE ROLE OF SKY RADIATIONS IN SHAPING SURFACE REFLECTANCE ANISOTROPY

~
$\underbrace{11}$

ATMOSPHERE-FREE BRF

Aerosols
Molecules

TOP-OF-ATMOSPHERE BRF

BOTTOM-OF-ATMOSPHERE BRF

The Bottom-Of-Atmoisphere (BOA) BRF should not be confused with the atmospheric-free surface BRF.

Atmospheric correction methods usually do not make clear whether the BOA BRF or AtmosphericFree (AF) surface BRF is provided.

These differences can have a significant impact for lower atmospheric composition retrieval over land surfaces.

SRF - ATM INTERACTIONS 1D VEGETATED SURFACE RTM

Simulation performed with the model of Gobron, et al. . 1996. "A SemiDiscrete Model for the Scattering of Light by Vegetation." Journal of Geophysical Research 102: 9431-46.

SRF - ATM INTERACTIONS

BOTTOM OF ATMOSPHERE REFLECTANCE IN THE PRINCIPAL PLANE

BOTTOM OF ATMOSPHERE REFLECTANCE IN THE PRINCIPAL PLANE

Aerosol optical thickness can change because:

9 The particle concentration or extinction coefficient change in time

- Changes in the wavelength of (hyperspectral) observations

SRF - ATM INTERACTIONS

SCATTERING OPTICAL THICKNESS

SRF - ATM INTERACTIONS

SCATTERING OPTICAL THICKNESS

SRF - ATM INTERACTIONS

SCATTERING OPTICAL THICKNESS

SRF - ATM INTERACTIONS

Constant instrinsic surface properties in the $320-750 \mathrm{~nm}$ range

AF SURFACE BRF IN THE PRINCIPAL PLANE IN THE 320-750nm SPECTRAL RANGE

SRF - ATM INTERACTIONS

Let's assume constant intrinsic surface properties in the 320 - 750nm range

AF SURFACE BRF IN THE PRINCIPAL PLANE IN THE 320-750nm SPECTRAL RANGE

SRF - ATM INTERACTIONS

Constant instrinsic surface properties in the $320-750 \mathrm{~nm}$ range

AF SURFACE BRF IN THE PRINCIPAL PLANE IN THE 320-750nm SPECTRAL RANGE

SRF - ATM INTERACTIONS

Let's assume constant intrinsic surface properties in the 320 - 750nm range

AF SURFACE BRF IN THE PRINCIPAL PLANE IN THE 320-750nm SPECTRAL RANGE

SRF - ATM INTERACTIONS

Let's put an atmosphere on top of the surface

AF SURFACE BRF IN THE PRINCIPAL PLANE IN THE 320-750nm SPECTRAL RANGE

SRF - ATM INTERACTIONS

Let's put an atmosphere on top of the surface

BOA BRF IN THE PRINCIPAL PLANE IN THE 320 - 750nm SPECTRAL RANGE

SRF - ATM INTERACTIONS

Let's put an atmosphere on top of the surface

BOA BRF IN THE PRINCIPAL PLANE IN THE 320 - 750nm SPECTRAL RANGE

SRF - ATM INTERACTIONS

Let's put an atmosphere on top of the surface

SRF - ATM INTERACTIONS Analysis of the AF - BOA BRF

BOA BRF IN THE PRINCIPAL PLANE IN THE 320-750nm SPECTRAL RANGE

SRF - ATM INTERACTIONS

SURFACE BRF SPECTRAL VARIATIONS

SRF - ATM INTERACTIONS

BOA /AF RELATIVE DIFFERENCE

SURFACE BRF SPECTRAL VARIATIONS

NOW WITH CHANGING SURFACE CONDITIONS

PRACTICAL SENTINEL-4 EXAMPLE

PARIS EXAMPLE

rayfierence (1)

S4 BAND 320 Urbanised

S4 BAND 320 Urbanised

FROM AF BRF TO LER

Method 1: LER = AF BRF

$$
\operatorname{LER}(t)=f\left(\Omega_{s}(t), \Omega_{v} ; p_{i}\right)
$$

This approximation could be used in case of low optical thickness, e.g., in the NIR spectral region. Provides the exact solution for the single scattering.

S4 BAND 320 Urbanised

FROM AF BRF TO LER

 Method 2: LER = AF DHR (black sky)$\operatorname{LER}(t)=\operatorname{DHR}\left(\Omega_{s}(t) ; p_{i}\right)$

This approximation is pretty meaningless as it does not respect the S4 illumination of viewing conditions.

FROM AF BRF TO LER

 Method 2: LER - or DHR$$
\operatorname{LER}(t)=\operatorname{DHR}(\Omega, \tau) ; p_{\nu}
$$

This approx, nation is pretty meanir, less as it does not resp, + the S4 illumina+ , n of viewing conditions.

FROM AF BRF TO LER

 Method 3: LER = Diffuse BHR (white sky)$$
\operatorname{LER}=B H R\left(p_{i}\right)
$$

This approximation could be used in case of high scattering optical thickness, e.g., in the UV region.

S4 BAND 320 Urbanised

FROM AF BRF TO LER

Method 4: LER = BOA BRF
$\operatorname{LER}(\mathrm{t}, \tau)=g\left(\Omega_{s}(t), \Omega_{V} ; p_{\dot{p}} \tau(t)\right)$

This approximation is the best choice but requires the knowledge of $\tau(t)$ and the irradiance field at the surface.

S4 BAND 320 Urbanised

CONCLUSIONS (1)

- Sky radiation plays an important role in shaping surface BRF;
- BOA BRF and atmospheric free BRF are often mixed though they might exhibit important differences
- In the blue-NIR spectral region;
- When the scattering optical thickness is important;
- In the hot spot conditions;
- These differences might have an important impact for lower atmosphere trace gas retrieval over land surfaces.

