Juhan Ross Legacy Symposium

Ispra, Italy

Dudelstatd, Germany, Oct. 1989

Using the EPIC/DSCOVR O2 B-band for monitoring vegetation

Alexander Marshak (NASA GSFC)

Yuri Knyazikhin (Boston University)

and

Many thanks to the DSCOVR Project and the DSCOVR Science Team

DSCOVR DEEP SPACE CLIMATE OBSERVATORY

advanced warning of approaching solar storms

Courtesy of Space X

DSCOVR at Lagrange-1

At L1, the neutral gravity point between the Sun and the Earth, DSCOVR will remain near the same position relative to the Earth and Sun

Lissajous Orbit

August 25; 11 GMT: 968.46 day since 01/01/2015 dist. from Earth = 1.577 10⁶ km SEV = 7.94° Velocity = 0.241 km/sec

Earth Polychromatic Imaging Camera (EPIC)

- 2048 x 2048 pixel CCD;
- 8 km pixel size;
- One full set of images
 13/day in winter
 22/day in summer

Wavelength (nm)	Full width (nm)	Primary Applications
317.5 ±0.1	1±0.2	O zone, SO ₂
<u>325 ±0.1</u>	2±0.2	Ozone
340 ±0.3	3±0.6	Ozone, Aerosols
388±0.3	3±0.6	Aerosols, Clouds
443 ±1	3±0.6	Aerosols
551 ±1	3±0.6	Aerosols, Vegetation
680±0.2	2 <i>±</i> 0.4	Aerosol, Vegetation, Clouds
687.75 ±0.2	0.8±0.2	Cloud Height
764.0±0.2	1±0.2	Cloud Height
779.5 <i>±</i> 0.3	2±0.4	Clouds, Vegetation

Assumptions:

- Lunar reflection is constant relative to the adjacent pairs: 680 and 688; 764 and 780;

- The ratio between two neighboring channels doesn't depend on Solar and Viewing geometry;

Assumptions:

- Lunar reflection is constant relative to the adjacent pairs: 680 and 688; 764 and 780 nm

Using the EPIC/DSCOVR O2 B-band for monitoring vegetation

EPIC reflectance at six bands measured on March 22, 2016 at 10:52 GMT

SZA=6.4±0.5, |μ₀|=0.994±0.001; VZA=12.7±0.5, μ=0.976±0.002; scattering angle is 171.5°.

Two EPIC NDVIs from March 22, 2016

SZA=6.4±0.5, |μ₀|=0.994±0.001; VZA=12.7±0.5, μ=0.976±0.002; scattering angle is 171.5°.

$\Omega_0 \approx -\Omega$ (back scattering direction)

Spectral Invariant Approximation

$$R_{\lambda}(\Omega, \Omega_{0}) = \exp(-\frac{\tau_{\lambda}}{|\mu_{0}|}) \rho_{\lambda}(\Omega, \Omega_{0}) \exp(-\frac{\tau_{\lambda}}{\mu}) + D_{\lambda}$$

$$\rho_{\lambda}(\Omega, \Omega_{0}) = K(\Omega, \Omega_{0}) W_{\lambda}$$

$$K \text{ is determined entirely by canopy geometrical properties while}$$

$$W_{\lambda} = \omega_{0\lambda} \frac{1-p}{1-p\omega_{0\lambda}}$$

$$W_{\lambda} = \omega_{0\lambda} \frac{1-p}{1-p\omega_{0\lambda}}$$

$$\omega_{0\lambda} = \exp(-A_{\lambda}) = \exp\left[-(\alpha k_{Ch,\lambda} + \beta)\right]$$

 $k_{Ch,\lambda}$ is the chlorophyll absorption spectrum, *a* is its concentration and β represents the total absorption coefficient of dry matter.

$$\frac{W_{\lambda}}{\omega_{0\lambda}} = pW_{\lambda} + (1-p) \qquad \qquad \frac{\rho_{\lambda}}{\omega_{0\lambda}} = p\rho_{\lambda} + K(1-p)$$

Huang et al., 2007; Knyazikhin et al., 2011
$$\frac{R_{\lambda}(\Omega, \Omega_{0})}{\omega_{0\lambda}} = pR_{\lambda}(\Omega, \Omega_{0}) + b(\Omega, \Omega_{0}) \exp\left(-\frac{2\tau_{\lambda}}{\mu}\right) + D_{A\lambda}$$

Spectrally variable scattering coefficient W_{λ} obtained from EPIC observations

The approximated values of W_{λ} mimic the shape of the spectral scat. coefficient over dense vegetation although its magnitudes are overestimated.

It always fits the scattering coefficient at λ = 551, 688 and 780 nm independently of atmospheric conditions while its value at λ = 680 nm fails to be fitted.

Summary

If the EPIC O2 B-band (688 nm) is used instead of the red band, the effect of atmosphere (the diffuse radiation) on surface reflectance *will be reduced* and the residual uncertainties in atmospheric correction can be better tolerated.

This is due to two factors:

- (i) vegetated surface is yet sufficiently dark at 688 nm and
- (ii) the O2 absorbing atmosphere substantially reduces multiple scattering.

The spectral invariant approximation supports this statement.

Sig Gerstl

MODIS/Terra&Aqua and EPIC/DSCOVR

MODIS Terra 10:30 equatorial crossing time

EPIC 10:56 UTC Atter Time Zene Mark

MODIS Aqua 13:30 equatorial crossing time

Using the EPIC/DSCOVR O2 B-band for monitoring vegetation

Alexander Marshak (NASA GSFC) and Yuri Knyazikhin (Boston University)

Example with MISR and EPIC

To summarize, the scattering coefficient W_{Λ} at Λ = 551, 688 and 780 nm (but not at Λ = 680 nm) can be well approximated by the chlorophyll absorption spectrum.