

Juhan Ross Legacy Symposium

24-25 August 2017

20 years of algorithms for the

derivation of global vegetation

products from European medium

resolution sensors

		R. Myneni		
A.Verger	M. Leroy			
F. Camacho	P. Bicheron	Y. Knyazikhin		
R. Lacaze	B. Berthelot	B. Tan		
B. Smets	P. Rossello	W. Yang		
K. Pavageau	H. Eerens	A. Pragnère		
C. Bacour	T. Block	B. Combal		
S. Garrigues	B. Scholze	O. Hautecoe		

M. Weiss, F. Baret V. Bruniquel

O. Hagolle C. Di Bella M.E.Beget J. Demarty

E. Fillol ur

D. Raymaekers

F. Jacob P. Pacholcyzk H. Makhmara G. Duveiller P. Defourny M. Claverie **V.Demarez**

UCL

Université

catholique

de Louvain

S. Buis **R.** Lercerf S. Kandasamy E. Vermote W. Li D. Allard

Institut de recherche

INVERSE MEDIUM RESOLUTION: GLOBAL COVERAGE – HIGH TEMPORAL FREQUENCY

REQUIREMENTS FOR GLOBAL MEDIUM RESOLUTION PRODUCTS

⇒ GMES/Copernicus context:

- global monitoring for environment and security
- ⇒Meet the user needs
 - Accuracy : Quality Flags / Confidence Intervals / Validation
 - Consistency : through time & between sensors
 - No Gap

USER ALWAYS ASSOCIATED TO THE PRODUCT DEVELOPMENT

- ⇒Meet technical requirements
 - Operational context + Near Real Time
 - Easy access to the community (ESA does not deliver Level2 & 3 data)

TECHNICAL CENTERS (VITO/CNES) INVOLVED IN PROJECTS

Biophysical Algorithms: Machine Learning

- \Rightarrow Principle:
 - calibrate non linear relationships between inputs (reflectance) and outputs (biophysical variable)
- ⇒ Machine learning:
 - currently neural networks
 - Generic algorithm

⇒Setting up of the learning dataset is crucial: representativeness

- Vegetation types, development stages & conditions
- Radiometric Noise
- Observational configuration

COPERNICUS PRODUCTS

				Learning Input	Temporal compositing				
Na	Name	lame Sensors	Resol.		Input	Smoothing	Gap Fil.	NRT	Improvement
cy(())PEs	CYCLOPES	VGT1	1km	Sim. Generic	TOC Red/NIR/ SWIR	Reflectance Weighted 30 days	×	×	
	GEOV1	VGT1/VGT2 /PROBAV	1km	<mark>Meas.</mark> Generic	TOC Red/NIR/ SWIR	Reflectance Weighted 30 days	×	×	Accuracy (High LAI)
geoland geolandi2	GEOV2	VGT1/VGT2	1km	Meas. Generic	TOA Red/NIR/ SWIR	Product 30 days	×	× 1-2 day lag	Temporal consistency
	GEOV3 1km	VGT1/VGT2 /PROBAV	1km	Meas. EBF/Non EBF	TOC RED/NIR Red/NIR/ SWIR	Product Variable temp window	Climato		NRT, temporal consistency, completeness
magin	GEOV3 300m	PROBAV	300m	Meas. EBF/Non EBF	TOC Red/NIR	Product Variable temp window	Data	✓	NRT, spatial resolution

RESULTS : PRODUCT COMPARISON CYCLOPES vs GEOV1

CYCLOPES/GEOV1:

1D simulations vs actual refl + fused MOD+CYC

RESULTS : PRODUCT COMPARISON GEOV2 vs GEOV1

n=33058; RMSE=0.29; R=0.98 slope=1.07; offset=-0.06

⇔GEOV2 /GEOV1

 Temporal compositing at the product level

TOA vs TOC

RESULTS : GEOV3

RESULTS – GAP FILLING

⇒ Polynomial fitting inGEOV3 reduce the %gaps

⇒Winter period: gaps are too large because of snow & bad weather

.... AND VALIDATION

⇒2000-2005:

- 73 campaigns
- Similar to BigFoot/MODLAND
- Main limitations: spatial sampling vs man power
- Use of HR data to spatially interpolate local measurements

2006:

- Ground measurements: not enough
- Product inter-comparison database + machine learning

⇒2011:

- Web platform for product intercomparison
- BELMANIP2

⇒2013-2015:

WHAT DID WE LEARN: biophysical algorithm

- ⇒ Cloud mask accuracy
- ⇒ TOC/TOA reflectance as inputs
 - Very good performances achieved with TOA as inputs but requires a larger training dataset
- ⇒Class Specific processing
 - EBF: can be identified easily and should be processed separately
 - Cloud occurrence
 - Temporal course
 - Other vegetation classes?
 - Dependence on map classification (update frequency? Mis-classification?)
- ⇒ Machine learning
 - Use of actual satellite data is better but limited by the availability of ground data (currently MODIS+CYCLOPES fused products)
- ⇒ Effective/True LAI
- ⇔Ground truth
 - Limited by man power
 - PSF of medium resolution instruments can not be neglected in heterogeneous conditions

⇒ Temporal consistency

- Compositing at the product level : better compromise between the temporal smoothness and the data fit
- Adaptive temporal window (function of amount of available data)
- ⇒Gap filling
 - a priori information provides better results than mathematical fitting
 - Use of climatology
 - Too long period masks possible recent evolution
 - Too short period more sensitive to atypical previous years
 - Polynomial fit
 - Sensitive to noise

⇔Near Real Time :

- Not adequate at the very beginning of growing or senescent phase
- Projection is highly dependent on the amount of available data in the previous temporal window

WHAT TO DO NEXT ?

BENEFIT FROM THE AVAILABILITY OF DECAMETRIC DATA

⇒ Algorithm : Machine learning across scales

- RTM: 3D-4D modelling at very HR resolution (Fred's talk)
 - Deep learning combining accurate measurements & modelling
- Transfer to decametric products

Machine learning (inverse model)

Class specific algorithm : better classification accuracy, more frequent updating to capture HR phenology, especially for short vegetation cycle

- Transfer to hecto/kilometric products
 - Learning based on decametric products
 - Going backwards in time (reprocessing archive)

⇔Validation

- Focus on the validation of decametric products Measurements at this scale easy to complete and more and more available
- Temporal monitoring of the vegetation cycle is mandatory New sensors are becoming available (IOT)

 Indirect validation of hecto/kilometric resolution through the validation of decametric products (estimate sensor PSF is mandatory)