Angular Normalization of Satellite Observations of Sun-induced Chlorophyll Fluorescence as an Improved Proxy of Vegetation Productivity

Jing M. Chen1,2, Liming He1, Shuren Chou2, Gang Mo1, Joanna Joiner3, Hua Yu2, Yongguang Zhang2, Weimin Ju2, and Ze Wang1

1Department of Geography University of Toronto, Canada
2International Institute of Earth System Science Nanjing University, China
3NASA Goddard Space Flight Center

Acknowledgement:
Christian Frankenberg, Jet Propulsion Laboratory
Joe Berry, Stanford University

Juhan Ross Legacy Symposium
Tartu Observatory, Toravere, Estonia
24-25 August 2017
What is Sun-induced Chl Fluorescence (SIF)?

Part (~1%) of photosynthetically active radiation absorbed by leaf chlorophyll is emitted in longer wavelengths as SIF.

Colombo et al., 2016, *Annali Di Botanica*
Satellite Sensors That Measure SIF

OCO-2
- Launch: July 2014
- Footprint: 1.29 km × 2.25 km
- Cross-Track: <±1°

GOSAT
- Launch: January 2009
- Footprint: 10.5 km
- Cross-Track: ±35°

GOME-2
- Launch: October 2006
- Footprint: 80 × 40 km
- Cross-Track: ±54°
Correlation Between Chlorophyll Fluorescence and GPP

GOSAT, 2009, Annual Total, Spatial Correlation

Frankenberg et al. 2011, GRL

\[
\overline{F_s} = F_s / \cos(SZA(t_0)) \cdot \int_{t=t_0}^{t=t_0+1} \cos(SZA(t))dt
\]
1. Should we be concerned about the BRDF of SIF measurements?
An eddy covariance system and a rotating SIF observation system
Winter wheat, Jurong, Jiangsu, May 2016
Multi-angle Observations of SIF$_{687}$
Winter Wheat, Jurong, Jiangsu, China, May 17, 2016

TIME=13:00
Multi-angle Observations of SIF$_{687}$

Winter Wheat, Jurong, Jiangsu, China, May 17, 2016

7 am

8 am

9 am

10 am

11 am

12 pm
Multi-angle Observations of SIF$_{687}$ vs. GPP
Winter Wheat, Jurong, Jiangsu, China, May 16, 2016

$y = 2.0805x - 0.0201$
$R^2 = 0.598, p<0.001$
SIF at the Canopy Level

\[SIF(\theta_v, \theta_s, \phi, t) = P_{sun}(\theta_v, \theta_s, \phi) \times SIF_{sun}(t) + P_{sh}(\theta_v, \theta_s, \phi) \times SIF_{sh}(t) \]

Pinto et al., 2016, PCE
Probability of Observing a Sunlit Leaf

\[P_{\text{sun}}(L) \quad P_{\nu}(L) \]
Probability of Observing Sunlit Leaves

$P_{sun,v}(L)$: Probability of observing sunlit leaves at the accumulated LAI (L),

$P_{sun}(L)$: Probability of illuminating a leaf at L,

$P_{v}(L)$: Probability of seeing a leaf at L

\[P_{sun,v}(L) = P_{sun}(L) P_{v}(L) \]

If these two probabilities are independent of each other, i.e., the solar beam and the view line reach the same leaf through different gaps in the canopy. Otherwise, a hotspot function needs to be used.
Probability of Observing Sunlit Leaves

\[L_{sun _v} = \int_0^h \exp \left[- \frac{0.5 \cdot L\Omega}{\mu_s} \cdot (h - z) \right] \cdot \frac{L\Omega}{h} \cdot \exp \left[- \frac{0.5 \cdot L\Omega}{\mu_v} \cdot (h - z) \right] \, dz \]

\[= 2 \cdot \frac{\mu_s \mu_v}{\mu_s + \mu_v} \left\{ 1 - \exp \left[- \left(\frac{1}{\mu_s} + \frac{1}{\mu_v} \right) \cdot \frac{L\Omega}{2} \right] \right\} \]

\[P_{\text{sun}}(L) = \mu_s = \cos \theta_s \]

\[P_{\text{v}}(L) = \mu_v = \cos \theta_v \]
Observed SIF is the Sum of the SIF Emissions from Sunlit and Shaded Leaves and Enhancement due to Multiple Scattering

\[
SIF_{740} = SIF_s \cdot L'_{sun_\nu} + SIF_{sh} \cdot L'_{sh_\nu} + \alpha \cdot SIF_s \cdot L_v
\]

Sunlit + Shaded + Multiple Scattering

SIF per unit sunlit leaf area:

\[
SIF_s = \frac{SIF_{740}}{L'_{sun_\nu} + L'_{sh_\nu} / \beta + L_v \cdot \alpha}
\]

SIF at the hotspot:

\[
SIF_h = \frac{SIF_{740} \cdot L_{sun}}{L'_{sun_\nu} + L'_{sh_\nu} / \beta + L_v \cdot \alpha}
\]

He, Chen et al. (2017, GRL)
Hot Spot Correction to the Probability of Observing Sunlit Leaves

\[
L'_{sun _v} = L_{sun _v} + \left[L_{sun} - L_{sun _v} \right] F(\xi)
\]
Ratio of the SIF Emissions from Leaves Trapped in the Canopy

Sunlit Leaves

Shaded Leaves

\[
SIF_{sun} \cdot \int_0^h\left(1 - P_c\left(\frac{L\Omega}{h} \cdot (h - z)\right)\right) \cdot \exp\left[-\frac{0.5 \cdot L\Omega}{\mu_s \cdot h} \cdot (h - z)\right] \cdot \frac{L\Omega}{h} \, dz
\]

\[
SIF_{sh} \cdot \int_0^h\left(1 - P_c\left(\frac{L\Omega}{h} \cdot (h - z)\right)\right) \cdot \left(1 - \exp\left[-\frac{0.5 \cdot L\Omega}{\mu_s \cdot h} \cdot (h - z)\right]\right) \cdot \frac{L\Omega}{h} \, dz
\]
Enhancement of SIF by Multiple-scattering (MS) for a Shaded Leaf

Assuming that the SIF from a shaded leaf is one unit without MS, the MS contributes 0.1 to 0.87 unit of SIF for different LAIs and solar zenith angles.

\[\alpha = \frac{\Delta SIF}{SIF_{sun}} \]
Total Canopy SIF after Angular Normalization

\[SIF_t = SIF_h + SIF_{sh} \cdot (L - L_{sun}) \]
Farquhar’s Enzyne-Kinetic Model

\[W_c = V_m \frac{C_i - \Gamma}{C_i + K} \]

\[W_j = J \frac{C_i - \Gamma}{4.5C_i + 10.5\Gamma} \]

\[GPP = \min(W_c, W_j) - R_d \]

\(W_c \) and \(W_j \) are temperature/nutrient-limited and light-limited gross photosynthesis rates.
SIF and GPP at the Canopy Level

\[SIF_t = SIF_h + SIF_{sh} \cdot (L - L_{sun}) \]

\[GPP = L_{sun} GPP_{sun} + GPP_{sh} (L - L_{sun}) \]
Chlorophyll Fluorescence Distribution (GOME-2, 2010, Annual Average, 1° Resolution)

Daily Average: \[
\overline{F_s} = F_s / \cos(SZA(t_0)) \cdot \int_{t=t_0}^{t=t_0+1} \cos(SZA(t)) \, dt
\]
Chlorophyll Fluorescence at Hotspot
(GOME-2, 2010, Annual Average, 1° Resolution)
Global GPP Distribution
(Two-leaf model BEPS, 2010, 1° Resolution)
Temporal Correlation Between SIF and GPP
(GPP from BEPS, SIF from GONE-2, 2010, 1° Resolution)

Correlation coefficient (r)

Using original daily GONE-2 data and choosing the largest normalized daily SIF values in 10-day intervals to correlate with 10-day total GPP values over one year.
The differences of R^2 (ΔR^2) between SIF$_t$ vs. total GPP and SIF$_{740}$ vs. GPP, for pixels with $p<0.001$ in 2007-2015.

Positive values indicate improved correlation after the angular normalization.

He, Chen et al. (2017, GRL)
Multi-angle Observations of SIF_{687} vs. GPP

Winter Wheat, Jurong, Jiangsu, China, May 17, 2016

Before Angular Normalization

$$y = 2.0805x - 0.0201$$
$$R^2 = 0.598, p<0.001$$

After Angular Normalization

$$y = 4.1242x - 0.1883$$
$$R^2 = 0.6409, p<0.001$$

Correlation with Hotspot SIF only

$$y = 4.0052x - 0.31$$
$$R^2 = 0.7001, P<0.001$$
Summary

- So far limited field measurements of sun-induced chlorophyll fluorescence (SIF) over a rice field show large variations with view and sun angles;

- Separating the measured total SIF into sunlit and shaded components and re-computing the total SIF emission as the sum of these components is an effective way to normalize multi-angle SIF measurements;

- Applying the angular normalization scheme to GOME-2, we found that the coefficient of determination (r^2) is improved by up to 15% between normalized SIF and modelled GPP from the case without normalization. Most improvements are found in forests and shrubs where vegetation structure is distinct.

Acknowledgement:
This research is supported by an NSERC grant, a Canada Research Chair grant, and a grant from the Chinese National Science Foundation.